
DEFOG

Data Center Infra. Consulting

# Power Design Proposal For GPU Server

# **Contents**



- 1. Overview
- 2. GPU Server 운영 환경 주요 이슈
  - 2.1 Trouble Shooting : 전원 분전 회로 구성 방안
  - 2.2 Trouble Shooting : Cooling Type별 구성 방안
- 3. Power Design For Nvidia GPU Server
  - 3.1 DGX A100
  - 3.2 DGX H100
- 4. Case Studies
  - 4.1 기존 전산실 활용
  - 4.2 독립 전산 환경 구축
- 5. Why DEFOG
- 6. Our Solutions

Overview

#### **Overview**

AI나 ML(Machine Learning) 등 High Performance Computing 작업을 위한 전산시스템 도입이 활발해 지면서, 이들 GPU Server 장비들이 안정적으로 운영될 수 있는 전산 인프라 구성의 필요성 대두되고 있습니다.

그러나 기존에 운영 중인 전산 인프라에서의 GPU Server 운영 환경 구축 시 인프라 설비 요구조건의 큰 차이로 인해 많은 제약 및 한계에 직면하고 있는 게 사실입니다.

디포그는 GPU Server를 도입하고자 하는 기업 또는 기관들이 GPU Server가 요구하는 운영 조건을 충족하고 안정적으로 운영될 수 있는 인프라 설비를 쉽고, 효율적으로 구성할 수 있는 Total Solution Guide 를 제시하고자 합니다.

#### 목적

- 주력으로 사용되고 있는 NDIVIA DGX Server 군의 인프라 요구 조건을 분석하여 구축 대상 Site의 인프라 설비의 적용 가능 여부 판단
- 다양한 인프라 설비 환경을 가진 대상 사이트에 적용 가능한 GPU Server용 Total 인프라 Solution 제시

## 대상

- GPU Server 구성을 위한 적절한 환경 구축이 필요한 기관 및 기업
- 기존 전산실을 활용한 GPU Server 운영 환경 구성에서의 제약이나 한계를 극복할 수 있는 방안을 필요로 하는 기관 및 기업
- GPU Server 운영 환경에 대한 정확한 해석과 근거에 기반한 환경 구성 계획에 대한 적정성을 확인하고자 하는 기관 및 기업

GPU Server 운영 환경 주요 이슈

#### GPU Server 구성을 위한 두가지 주요 환경 요소

- 1) Server의 전원시스템이 요구하는 조건을 충족할 수 있는 전원 공급 회로의 구성
- 2) 높은 전력밀도(열밀도)를 지원할 수 있는 쿨링 시스템 구성

#### 1) 전원 회로 구성

- 현 시점에서 가장 많이 사용되고 있는 대표적인 GPU Server로는 NVIDIA의 DGX A100과 DGX H100 모델이 있으며, 이들 장비의 요구 특성의 사전 이해 필요
- DGX A100 model의 경우, 전원시스템이 2N redundant topology를 채택하고 있기에(3+3), 최소 독립된 Dual Path의 전원회로 구성이 필요
- DGX H100 model의 경우, 전원시스템이 4+2 redundant topology를 채택하고 있으므로, 최소 독립된 3개의 전원 회로 구성이 필요
- PDU 선정과 구성은 구성이 용이하고 경제적인 용량으로 선택해야 하며, 전원 회로 간 밸런스와 Phase 간 밸런스가 잘 유지될 수 있는 회로 구성을 선택해야 함

#### 2) 쿨링 시스템 구성

- 랙당 서버 구성 수량에 따라 랙 전력밀도가 달라지므로, 지원 가능한 쿨링 용량에 맞추어 랙 당 구성 수량을 선정
- 상황이 허락하는 경우 A100 모델의 경우 랙당 3대, H100 모델의 경우 랙당 2대 구성으로 랙당 전력밀도를 20kW 전후로 구성하는 것이 쿨링시스템 구성이나 전원 회로 구성에 있어 가장 용이하고 경제적임
- 상용 CRAC/CRAH의 경우 쿨링 용량 대비 팬 풍량이 상대적으로 부족하므로 쿨러의 용량 선정을 팬 풍량을 기준으로 해야 함
- 쿨러 Type은 Room cooling 방식과 Row단위 쿨링 방식 및 랙 단위 쿨링 방식이 가능하며, 동일 공간에 전력 밀도 편차가 큰 경우 Room 쿨링 방식으로는 열밀도 편차에 대응하는데 한계가 있음

|       | NDIVIA DGX Server Model별 Specification |              |                              |          |        |      |                   |  |  |  |  |  |
|-------|----------------------------------------|--------------|------------------------------|----------|--------|------|-------------------|--|--|--|--|--|
| Model | RU                                     | PSU<br>구성 수량 | PSU Redundant<br>Requirement |          |        |      |                   |  |  |  |  |  |
| A100  | 6RU                                    | 6.5 kW       | 10.6 ℃                       | 4.64 CMM | 3.3 kW | 6 ea | Min. 3 PSU Active |  |  |  |  |  |
| H100  | 8RU                                    | 10.2 kW      | 11.0℃                        | 4.45 CMM | 3.3 kW | 6 ea | Min. 4 PSU Active |  |  |  |  |  |

※ A100 model의 System Spec. 상 Fan 80% PWM조건에서 △T는 13.9℃로 표기되어 있으나, CFD 분석 자료에 의한 Delta T 값 적용

## Model별 Rack PDU 구성 고려 사항

- PSU Redundant condition
- PDU Capacity
- Path 및 Phase Balance

#### **PSU Redundant condition**

| NDIVIA DGX Server Model별 Specification |            |           |                           |                   |  |  |  |  |  |
|----------------------------------------|------------|-----------|---------------------------|-------------------|--|--|--|--|--|
| Model                                  | Max. Power | PSU 구성 수량 | PSU Redundant Requirement |                   |  |  |  |  |  |
| A100                                   | 6.5kW      | 3.3kW     | 6ea                       | Min. 3 PSU Active |  |  |  |  |  |
| H100                                   | 10.2kW     | 3.3kW     | 6ea                       | Min. 4 PSU Active |  |  |  |  |  |

- A 100 Model의 경우 6개의 PSU 중 3개 까지의 PSU 장애에 대응 가능 하므로 Dual Path 구성으로 2N Redundant 확보 가능
- H 100 Model의 경우 6개의 PSU 중 2개 까지의 PSU 장애에 대응 가능하므로 최소 3개의 독립된 Path 구성이 필요



# PDU Capacity 및 Spec

- Rack PDU의 사양과 용량 및 구성 수량은 Rack당 수용 Server 수량과 Server Model에 따라 상이함
- Server Model에 따른 Rack당 구성 수량 별 요구 용량 및 최선의 PDU 구성 방안 참조

|    | PDI  | J당 용량 |         |                                      |
|----|------|-------|---------|--------------------------------------|
| 단상 | 220V | 32A   | 7.04kW  | 63A Receptacle은 32A 대비 용량비보다 더 높은 비용 |
| 건경 | 220V | 63A   | 13.86kW | ·<br>구되며, 케이블의 굵기로 인해 구성 및 관리가 어려우   |
| X  | 380V | 32A   | 21.06kW | 가능한 32A 용량 사용을 권고                    |
| 삼상 | 380V | 63A   | 41.46kW |                                      |

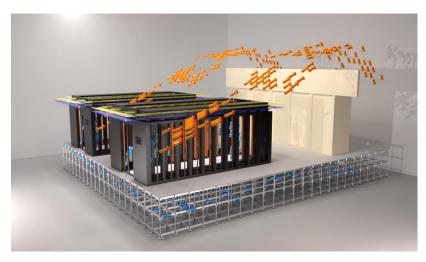
#### Path 및 Phase Balance

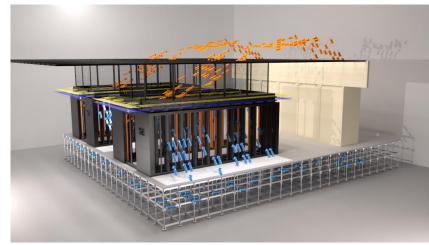
• Rack PDU의 사양과 용량은 Rack당 수용 Server 수량과 Server Model에 따라 상이하므로 Server Model별 Rack Mount 계획에 대한 사전 시뮬레이션을 통한 PDU 수량 및 사양을 결정해야 함

| Model    | System Max.<br>Power | PSU Capacity | PSU 수량 | Redundant<br>Topology | Min. Power Path 수 | Path별 요구 용량 |
|----------|----------------------|--------------|--------|-----------------------|-------------------|-------------|
| DGX A100 | 6.5kW                | 3.3kW        | 6ea    | 2N                    | 2paths            | 6.5kW       |
| DGX H100 | 10.2kW               | 3.3kW        | 6ea    | 2+1                   | 3paths            | 5.1kW       |

|       | Raided Floor를 통한 Cold Air Supply 구조에서의 구성 조건 분석 |                |                |             |                        |                      |                    |  |  |  |  |  |  |
|-------|-------------------------------------------------|----------------|----------------|-------------|------------------------|----------------------|--------------------|--|--|--|--|--|--|
| Model | Rack당<br>Server수량                               | Rack당<br>최대 전력 | Rack당<br>요구 풍량 | SA<br>최대 유속 | Perforated Tile<br>개구율 | Cold Aisle<br>Tile 수 | Rack당 공급<br>가능 공조량 |  |  |  |  |  |  |
|       | 2 대                                             | 13.0 kW        | 60.32 CMM      | 3 m/sec.    | 65%                    | 2 매                  | 64.8 CMM           |  |  |  |  |  |  |
| A100  | 3 대                                             | 19.5 kW        | 90.48 CMM      | 3 m/sec.    | 65%                    | 3 매                  | 97.2 CMM           |  |  |  |  |  |  |
|       | 4 대                                             | 26.0 kW        | 120.64 CMM     | 3 m/sec.    | 65%                    | 4 매                  | 129.6 CMM          |  |  |  |  |  |  |
|       | 2 대                                             | 20.4 kW        | 90.68 CMM      | 3 m/sec.    | 65%                    | 3 매                  | 97.2 CMM           |  |  |  |  |  |  |
| H100  | 3 대                                             | 30.6 kW        | 136.02 CMM     | 3 m/sec.    | 65%                    | 5 매                  | 162.0 CMM          |  |  |  |  |  |  |
|       | 4 대                                             | 40.8 kW        | 181.36 CMM     | 3 m/sec.    | 65%                    | 6 매                  | 194.4 CMM          |  |  |  |  |  |  |

#### 구축 환경


• 많은 데이터 센터 또는 전산실에 적용되어 있는 이중마루(Raised Floor) 환경에서의 구축 적정성 분석


#### 적용 기준

- 찬공기는 바닥의 타공타일(Peforated Tile)을 통해 Rack의 전면으로 공급되며, 타공타일의 개구율은 최대 65% 수준임
- 타공타일을 통과하는 공기의 최대 유속은 벤츄리 효과(Venturi Effect)가 발생되지 않게 하기 위해 초속 3m/sec. 로 설정

#### 이슈

- 기 구축되어 있는 환경을 이용할 수 있으나, 총 냉방용량에서 GPU Server zone에 할당될 수 있는 용량이 충분한지 여부와 GPU Server zone 외의 영역에서 운영되는 IT 장비들과의 공조량에 대한 충돌이 발생하지 않는 지 확인 필요
- 찬공기가 공급되는 냉복도(Cold Aisle) 타공 타일 폭이 2장(1.2m)인 경우 가능한 구성은 Rack 당 A100 Server 2대 설치 구성만 가능
- GPU Server 사용자 다수가 선호하는 구성인 Rack 당 A100 Server 4대나, Rack 당 H100 Server 2대 구성을 위해서는 필요한 냉복도의 폭이 과도하게 넓어짐(기존의 통상적인 냉복도 폭은 1.2m ~ 1.8m)
- 상부 Ceiling을 통해 더운 공기를 Cooler로 Return하는 경우 필요한 열복도(Hot Aisle) 폭은 냉복도의 75% 수준
- 이중 마루 하부에 급기용 공간, Ceiling 상부에 Return air Plenum이 구성되어야 하므로 건물의 층고가 최소 7m 이상 요구됨
- Room 단위 Cooling 방식으로, 부하와는 Loosely Coupled Control 방식이므로 동일 공간에 기존 IT 장비 운영 영역과 GPU Server 운영 영역이 공존하는 경우 큰 전력밀도의 편차에 대한 대응력 부족(고부하영역 냉방 부족, 저부하영역 냉방 과다)





#### 구성 방식

- 이중마루를 통한 냉기 공급, Cold Aisle Containment
- Side 또는 천정 상부를 통한 공기 Return
- 상용 Package Type 쿨러

## 장점

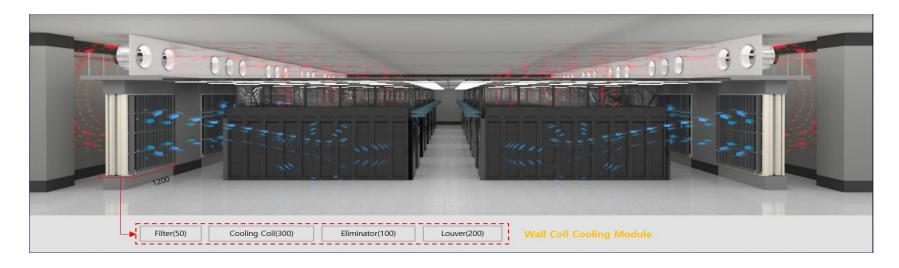
없음

#### 단점

- Rack 전력밀도가 높아지면서 냉복도의 폭이 비례하여 커지게 되어 고밀도 랙 적용의 장점이 상쇄됨
- Room 단위 쿨링 방식으로 기존의 다른 저밀도 랙과 동일 공간에 구성하기가 어려움
- 전력 밀도 편차에 대응하기 어려움
- 상용 페키지형 쿨러의 배치 공간이 부족해 짐

|       | Side Supply, Return Ceiling Plenum 구조에서의 구성 조건 분석 |                |                |             |                     |                                  |                    |                |  |  |  |  |  |  |
|-------|---------------------------------------------------|----------------|----------------|-------------|---------------------|----------------------------------|--------------------|----------------|--|--|--|--|--|--|
| Model | Rack당<br>Server수량                                 | Rack당<br>최대 전력 | Rack당<br>요구 풍량 | SA<br>최대 유속 | Cold Aisle<br>Width | Ceiling<br>Height<br>(Clearance) | Aisle당<br>공급 가능 풍량 | 열당<br>최대 Rack수 |  |  |  |  |  |  |
|       | 2 대                                               | 13.0 kW        | 60.32 CMM      | 3 m/sec.    | 1.9 m               | 3.5 m                            | 1,206.4 CMM        | 10 racks       |  |  |  |  |  |  |
| A100  | 3 대                                               | 19.5 kW        | 90.48 CMM      | 3 m/sec.    | 2.9 m               | 3.5 m                            | 1,809.6 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 4 대                                               | 26.0 kW        | 120.64 CMM     | 3 m/sec.    | 3.8 m               | 3.5 m                            | 2,412.8 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 2 대                                               | 20.4 kW        | 90.68 CMM      | 3 m/sec.    | 2.9 m               | 3.5 m                            | 1,813.6 CMM        | 10 racks       |  |  |  |  |  |  |
| H100  | 3 대                                               | 30.6 kW        | 136.02 CMM     | 3 m/sec.    | 4.3 m               | 3.5 m                            | 2,720.3 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 4 대                                               | 40.8 kW        | 181.36 CMM     | 3 m/sec.    | 5.8 m               | 3.5 m                            | 3,627.1 CMM        | 10 racks       |  |  |  |  |  |  |

#### 구축 환경


- 근래에 구축되는 데이터 센터에서 흔하게 적용되고 있는 Cooling 방식
- 열복도 차폐 구조에서 냉복도를 통해 냉기가 공급되고 Rack을 통과하면서 더워진 열기는 천정 상부로 Return되는 방식

#### 적용 기준

- 냉복도 기준으로 마주보는 두개의 rack 열은 냉복도를 공유하며, 이 냉복도를 통해 공급되는 냉기가 두개의 Rack 열의 IT 장비를 통해 인입되므로, 냉복도의 단면적 크기와 전력밀도에 따라 열당 배치 가능한 Rack 수가 제한됨
- 전산실의 천정 높이는 통상 4.5m가 넘을 수 있지만 Rack 상부에 배치되는 통신 트레이나 분전회로 들로 인해 공기 흐름을 가로 막고 있기 때문에 냉기가 공급 가능한 Clearance 기준의 높이는 3.5m 수준임
- 냉복도를 통해 냉기가 인입될 때의 최대 유속은 벤츄리 효과가 발생되지 않게 하기 위해 초속 3m/sec. 로 설정

#### 이슈

- 필요한 냉기 총량 = 열당 구성되는 Rack수와 Rack당 전력밀도로 결정 공급 가능한 냉기 총량 = 냉복도 폭과 높이에 의해 결정됨
- 냉복도의 폭으로 공급 가능 냉기 총량이 결정되기에 이 범위 내에서 총 IT 전력용량이 결정되어야 함
- 냉복도 통로폭 1.8m(통상) 배치의 경우, Rack 당 A100 Server 2대 구성시 열당 9개의 Rack 구성 가능, Rack 당 H100 Server 2대 구성시 열당 6 Rack구성 가능
- 선호되는 Rack당 4대의 A100 또는 Rack당 2대의 H100 Server 구성의 경우, 열당 10개 Rack을 구성하기 위한 냉복도의 폭은 A100이 3.8m, H100이 2.9m가 필요하여 통상적인 통로 폭보다 큼
- Ceiling 상부에 Return air Plenum이 구성되어야 하므로 건물의 층고(보 하단까지의 높이)가 최소 6.5m 이상이어야 함
- 고부하영역 냉방 부족, 저부하영역 냉방 과다 가능성 존재(Room 단위 Cooling)



#### 구성 방식

- · Hot Aisle Containment,
- Wall Type 쿨러 : Side Air Supply, 천정 상부로 Air Return
- Structured Ceiling Air Plenum

# 장점

- 이중 마루 구성 불필요
- 일반통로의 Cold Aisle화
- IT 장비와 Cooling 설비 공간의 분리로 유지보수 시의 물리적 보안 위험 방지



#### 단점

- Containment 단위의 제어가 가능하지만, 기본적으로는 Room 쿨링 방식이므로 큰 편차의 전력밀도는 허용되지 않음
- 전력밀도가 높아질 수록 냉복도의 폭이 커지거나 열당 배치되는 Rack 수가 제한됨

|       | Side Supply, Return Ceiling Plenum 구조에서의 구성 조건 분석 |                 |                |             |                     |                               |                    |                |  |  |  |  |  |  |
|-------|---------------------------------------------------|-----------------|----------------|-------------|---------------------|-------------------------------|--------------------|----------------|--|--|--|--|--|--|
| Model | Rack당<br>Server수량                                 | Rack 당<br>최대 전력 | Rack당<br>요구 풍량 | SA<br>최대 유속 | Cold Aisle<br>Width | Ceiling Height<br>(Clearance) | Aisle당<br>공급 가능 풍량 | 열당<br>최대 Rack수 |  |  |  |  |  |  |
|       | 2 대                                               | 13.0 kW         | 60.32 CMM      | 3 m/sec.    | 1.9 m               | 3.5 m                         | 1,206.4 CMM        | 10 racks       |  |  |  |  |  |  |
| A100  | 3 대                                               | 19.5 kW         | 90.48 CMM      | 3 m/sec.    | 2.9 m               | 3.5 m                         | 1,809.6 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 4 CH                                              | 26.0 kW         | 120.64 CMM     | 3 m/sec.    | 3.8 m               | 3.5 m                         | 2,412.8 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 2 대                                               | 20.4 kW         | 90.68 CMM      | 3 m/sec.    | 2.9 m               | 3.5 m                         | 1,813.6 CMM        | 10 racks       |  |  |  |  |  |  |
| H100  | 3 대                                               | 30.6 kW         | 136.02 CMM     | 3 m/sec.    | 4.3 m               | 3.5 m                         | 2,720.3 CMM        | 10 racks       |  |  |  |  |  |  |
|       | 4 CH                                              | 40.8 kW         | 181.36 CMM     | 3 m/sec.    | 5.8 m               | 3.5 m                         | 3,627.1 CMM        | 10 racks       |  |  |  |  |  |  |

#### 구축 환경

- Cooling Unit이 IT Rack 사이에 배치되는 구조로, 열복도 차폐 구조로 구성되며 고밀도 부하까지 지원이 가능함
- Cooling Unit으로의 배관을 위한 이중마루 구성이 필요
- 부하와 Cooling이 Rack 열 단위로 Tightly Coupled 되어 있으므로 부하 편차가 큰 환경에서도 대응이 용이함

#### 적용 기준

- In-Row Cooler는 IT Rack 전력밀도에 따라 Cooler의 풍량기준 Cooling 용량을 넘지 않도록 IT Rack수와 Cooler수의 비율을 맞추어 배치
- Cooler 들 간의 Redundancy를 위해 Cooler 용량의 80% 수준에 맞추어 IT Rack 전력용량 적용

# 이슈

- GPU Server용 Rack의 전력 밀도가 거의 20kW 전후로 고밀도이므로, IT Rack대 Cooler의 비율이 1:1에 가까움
- IT Rack 수량 만큼 Cooler도 함께 배치되어야 하므로 IT Rack 배치 수량이 제한될 수 있음
- Rack 열 단위의 Cooling이므로 부하 편차가 큰 환경에서도 용이하게 대응
- 상용 Cooler의 경우 냉복도/열복도 간의 차압을 기반으로 한 Fan Speed 제어가 가능하도록 제어프로그램 수정이 필요





#### 구성 방식

- · Hot Aisle Containment,
- In-Row Cooler

#### 장점

- Rack당 5kW 이하의 저밀도 부터 Rack당 30kW 고밀도 까지의 환경에 유연하게 적용
- 공기의 소통 경로가 최단거리로 공조 효율 향상
- Row 단위 Tightly Coupled Control 방식이므로 Containment 단위의 전력 밀도 편차에 유연하게 대응 가능(기존 저밀도 Rack 환경에서의 구성이 용이)

## 단점

- IT rack가 나란히 Cooler rack이 구성되기에 동일 용량 구성에서 Rack 열의 길이가 길어짐(작업 동선이 길어짐)
- Cooler로의 배관을 위한 이중마루 필요 > 이중마루 구성 필요성은 단점이지만, 추후 Rack당 40kW가 넘는 초고밀도 환경을 위한 Liquid Immersion Cooling으로의 전환 유연성에서 장점이기도 함

|          | Rear Door Cooler 구조에서의 구성 조건 분석 |                  |            |      |            |                     |                                |                                |  |  |  |  |  |
|----------|---------------------------------|------------------|------------|------|------------|---------------------|--------------------------------|--------------------------------|--|--|--|--|--|
| 제조사      | Model                           | Cooling Capacity | Air Volume | Туре | 풍량기준<br>용량 | IT Rack당<br>Cooler수 | Rack 당<br>A100 Server<br>구성 수량 | Rack 당<br>H100 Server<br>구성 수량 |  |  |  |  |  |
|          | CL20-C14                        | 55.0 kW          | 114.1 CMM  | 냉수식  | 24.3kW     | 1ea                 | 3대                             | 2대                             |  |  |  |  |  |
| Usystems | CL20-C18                        | 80.0 kW          | 137.0 CMM  | 냉수식  | 29.1kW     | 1ea                 | 4 <b>Ľ</b> H                   | 2대                             |  |  |  |  |  |
| CTI II 7 | RBW B0                          | 18.8 kW          | 80.0 CMM   | 냉수식  | 17.0kW     | 1ea                 | 2대                             | 1대                             |  |  |  |  |  |
| STULZ    | RBW C0                          | 32.3 kW          | 100.0 CMM  | 냉수식  | 21.3kW     | 1ea                 | 3대                             | 2대                             |  |  |  |  |  |

#### 구축 환경

- IT Rack의 후면에 Cooling Door를 설치하는 방식의 냉각시스템
- 부하와 Cooling이 Rack 단위로 Tightly Coupled 되어 있으므로 각 Rack별로 부하에 맞추어진 Cooling 제어
- 전산실 내부 전체 공간이 모두 냉복도화 되며, 별도의 Containment 구성이 불필요하고 Rack 배치가 자유로움

#### 적용 기준

- 기본적으로 Cooler당 IT Rack이 1:1로 대응하므로 IT Rack의 최대 전력 밀도는 17 ~ 24kW/rack
- IT Rack의 전력 밀도가 Cooler의 용량 대비 60% 미만인 경우 Rear Door Cooler 적용은 적합하지 않음
- IT Rack의 전력밀도가 Cooler 용량대비 60~70%인 경우 IT Rack 3개당 2대의 Cooler 적용 가능
- Cooler 들 간의 Redundancy를 위해 Cooler 용량의 80% 수준에 맞추어 IT Rack 전력용량 적용

#### 이슈

- IT Rack의 전력밀도가 20KW 전후인 경우 가장 우수한 Cooling Solution임
- Rack 단위의 Cooling이므로 부하 편차의 영향을 받지 않음
- Rack의 후면으로 배출되는 더운 공기는 Rack의 상부와 측면으로 Rack 전면부로 공기의 흐름이 이루어 지므로, Rack 상부에 최소 1M이상의 공간 필요
- 상용 Cooler의 경우 IT Rack의 전/후면 간의 차압을 기반으로 한 Fan Speed 제어가 가능하도록 제어프로그램 수정이 필요





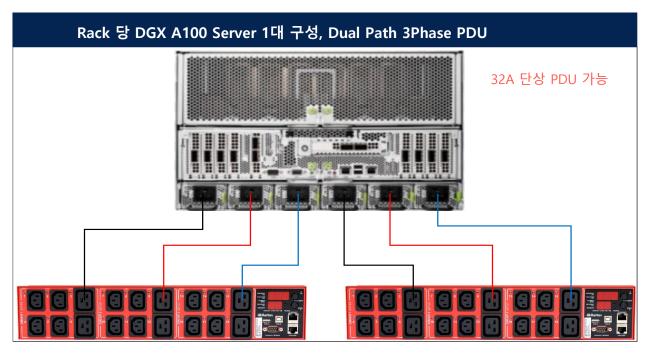


#### 구성 방식

- No-Containment, No-Ceiling,
- Rack당 1대씩의 Rear Door Cooler 구성

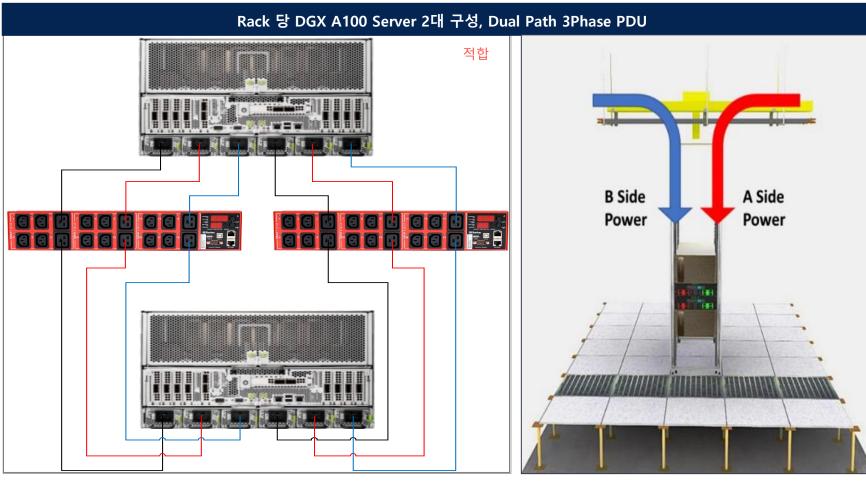
## 장점

- Rack당 20kW 이상의 고밀도에 적합
- Rack 단위 Tightly Coupled Control 방식이므로 전력 밀도 편차와 Layout에 무관하게 구성 가능
- 기존 저밀도 Rack 환경에서의 구성이 용이
- Containment 구성이 불필요


#### 단점

- 초기 구축 비용이 높음
- Rack 당 20kW 이하 전력밀도에는 비효율적
- Cooler로의 배관을 위한 이중마루 필요 > 이중마루 구성 필요성은 단점이지만, 추후 Rack당 40kW가 넘는 초고밀도 환경을 위한 Liquid Immersion Cooling으로의 전환 유연성에서 장점이기도 함

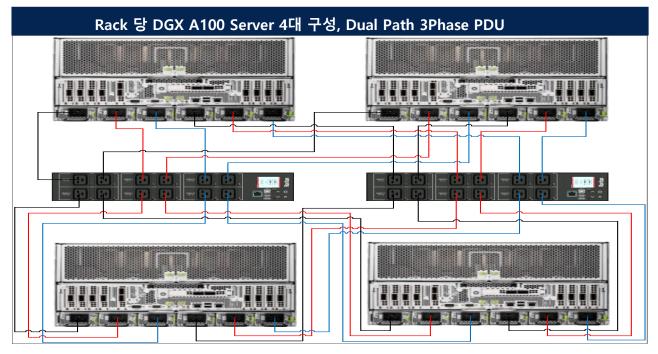
Power Design For Nvidia GPU Server


#### Rack당 Server 1대

- DGX A100 Server의 최대 전력은 6.5kW
- 3.3kW 용량 PSU 6개 장착
- DGX A100의 PSU Redundant는 2N Topology(6개 PSU 중 최대 3개 PSU 정지까지 허용)
- 2N Topology이므로 Dual Path로 구성되는 PDU 설치 구조 적용 가능

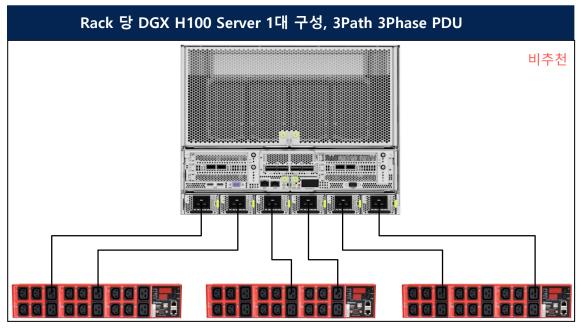


|           |       | PDU 1 |       |       | PDU 2 |       | Total |  |
|-----------|-------|-------|-------|-------|-------|-------|-------|--|
| Phase     | L1    | L2    | L3    | L1    | L2    | L3    | Total |  |
| Named     | 4.9A  | 4.9A  | 4.9A  | 4.9A  | 4.9A  | 4.9A  | 29.5A |  |
| Normal    | 1.1kW | 1.1kW | 1.1kW | 1.1kW | 1.1kW | 1.1kW | 6.5kW |  |
| PDU1 fail | fail  | fail  | fail  | 9.8A  | 9.8A  | 9.8A  | 29.5A |  |
| PDU2 fail | 9.8A  | 9.8A  | 9.8A  | fail  | fail  | fail  | 29.5A |  |


# Rack당 Server 2대



|              |         | PDU 1 |       |       | PDU 2 |       |       |  |  |
|--------------|---------|-------|-------|-------|-------|-------|-------|--|--|
| Phase        | L1 L2 L |       | L3    | L1 L2 |       | L3    | Total |  |  |
| NI a was a l | 9.8A    | 9.8A  | 9.8A  | 9.8A  | 9.8A  | 9.8A  | 59.1A |  |  |
| Normal       | 2.2kW   | 2.2kW | 2.2kW | 2.2kW | 2.2kW | 2.2kW | 13.kW |  |  |
| PDU1 fail    | fail    | fail  | fail  | 19.7A | 19.7A | 19.7A | 59.1A |  |  |
| PDU2 fail    | 19.7A   | 19.7A | 19.7A | fail  | fail  | fail  | 59.1A |  |  |

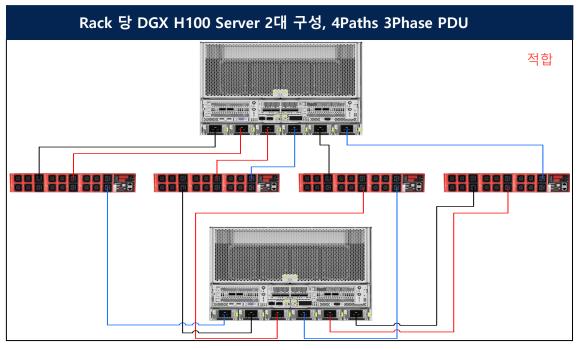

#### Rack당 Server 4대

- Rack당 4대의 DGX A100 Server를 구성하는 경우, Dual Path 2개의 삼상 PDU를 사용할 때, PDU의 용량은 Phase간 Unbalance를 고려할 때 45A 이상이 필요.
- 32A 삼상 PDU 2개 구성은 용량 부족(32A 3상 PDU 4개로도 가능)
- 63A 삼상 PDU 2개 또는 32A 삼상 PDU 4개로 구성하여야 함
- 32A 삼상 PDU 3개로의 구성도 가능하지만, Dual Path 구성에서 3개의 PDU는 Path간 Unbalance 야기



|           |          | PDU 1 |       |       | PDU 2 |       | Total  |  |
|-----------|----------|-------|-------|-------|-------|-------|--------|--|
| Phase     | Phase L1 |       | L2 L3 |       | L1 L2 |       | Total  |  |
| Name      | 19.7A    | 19.7A | 19.7A | 19.7A | 19.7A | 19.7A | 118.2A |  |
| Normal    | 4.3kW    | 4.3kW | 4.3kW | 4.3kW | 4.3kW | 4.3kW | 26.kW  |  |
| PDU1 fail | fail     | fail  | fail  | 39.4A | 39.4A | 39.4A | 118.2A |  |
| PDU2 fail | 39.4A    | 39.4A | 39.4A | fail  | fail  | fail  | 118.2A |  |

#### Rack당 Server 1대



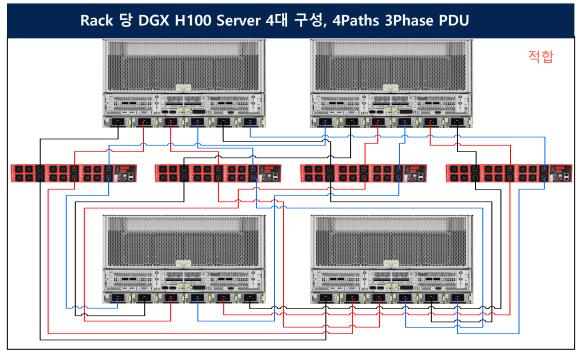

- 4+2 Redundant Topology를 가지는 H100
  모델의 전원 시스템 특성 상 최소 3개의 서로
  다른 Path로 구성되는 PDU가 필요
- 3개의 삼상 PDU로 구성하는 경우 각 PDU는
  3개의 상 중 2개만을 사용하기 때문에 PDU의
  상 밸런스가 이루어 지지 못함
- 3개의 단상 PDU로 구성하는 방법이 적합하나, 랙 당 한대의 server를 추가해야 하는 필요성이 발생할 때 용량 부족 현상으로 PDU를 교체하거나 추가해야 하는 이슈 존재

| PDU       | PDU 1 |       |    |    | PDU 2 |       |       | PDU 3 |       |        |  |
|-----------|-------|-------|----|----|-------|-------|-------|-------|-------|--------|--|
| Phase     | L1    | L2    | L3 | L1 | L2    | L3    | L1    | L2    | L3    |        |  |
| N1 1      | 7.7A  | 7.7A  | NA | NA | 7.7A  | 7.7A  | 7.7A  | NA    | 7.7A  | 46.4A  |  |
| Normal    | 1.7kW | 1.7kW | NA | NA | 1.7kW | 1.7kW | 1.7kW | NA    | 1.7kW | 10.2kW |  |
| PDU1 fail | fail  | fail  | NA | NA | 11.6A | 11.6A | 11.6A | NA    | 11.6A | 46.4A  |  |
| PDU2 fail | 11.6A | 11.6A | NA | NA | fail  | fail  | 11.6A | NA    | 11.6A | 46.4A  |  |
| PDU3 fail | 11.6A | 11.6A | NA | NA | 11.6A | 11.6A | fail  | NA    | fail  | 46.4A  |  |

각 3상 PDU에 2개의 PSU가 연결되는 구성으로 PDU의 Phase Balance가 맞지 않음

#### Rack당 Server 2대




- 4+2 Redundant Topology를 가지는 H100
  모델의 전원 시스템 특성 상 최소 3개의 서로
  다른 Path로 구성되는 PDU가 필요
- 3개의 삼상 PDU로 구성하는 경우 각 PDU는 3개의 상 중 2개만을 사용하기 때문에 PDU의 상 밸런스가 이루어 지지 못함
- 3개의 단상 PDU로 구성하는 방법이 적합하나, 랙 당 한대의 server를 추가해야 하는 필요성이 발생할 때 용량 부족 현상으로 PDU를 교체하거나 추가해야 하는 이슈 존재

| PDU       | PDU PDU 1 |       |       | PDU 2 |       |       | PDU 3 |       |       | PDU 4 |       |       | T. (.)     |
|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
| Phase     | L1        | L2    | L3    | L1    | L2    | L3    | L1    | L2    | L3    | L1    | L2    | L3    | Total      |
|           | 7.7A      | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 7.7A  | 92.7A      |
| Normal    | 1.7kW     | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 1.7kW | 20.4k<br>W |
| PDU1 fail | fail      | fail  | fail  | 9.3A  | 11.6A | 11.6A | 11.6A | 9.3A  | 9.3A  | 9.3A  | 9.3A  | 11.6A | 92.7A      |
| PDU2 fail | 11.6A     | 11.6A | 9.3A  | Fail  | fail  | fail  | 11.6A | 9.3A  | 9.3A  | 9.3A  | 9.3A  | 11.6A | 92.7A      |
| PDU3 fail | 9.3A      | 9.3A  | 11.6A | 11.6A | 9.3A  | 9.3A  | fail  | fail  | fail  | 11.6A | 11.6A | 9.3A  | 92.7A      |
| PDU4 fail | 9.3A      | 9.3A  | 11.6A | 11.6A | 9.3A  | 9.3A  | 9.3A  | 11.6A | 11.6A | fail  | fail  | fail  | 92.7A      |

PDU의 각 Phase 별로 하나의 PSU가 연결되는 구성이므로 PDU의 Phase Balance가 유지

PDU의 최대 전류값이 32A 미만이므로 32A 삼상 PDU 적용 적합

#### Rack당 Server 4대



- 4+2 Redundant Topology를 가지는 H100
  모델의 전원 시스템 특성 상 최소 3개의 서로
  다른 Path로 구성되는 PDU가 필요
- 3개의 삼상 PDU로 구성하는 경우 각 PDU는 3개의 상 중 2개만을 사용하기 때문에 PDU의 상 밸런스가 이루어 지지 못함
- 3개의 단상 PDU로 구성하는 방법이 적합하나, 랙 당 한대의 server를 추가해야 하는 필요성이 발생할 때 용량 부족 현상으로 PDU를 교체하거나 추가해야 하는 이슈 존재

| PDU       | PDU 1 |       |       | PDU 2 |       |       | PDU 3 |       |       | PDU 4 |       |       | Takal  |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Phase     | L1    | L2    | L3    | Total  |
| Nama      | 15.5A | 185.5A |
| Normal    | 3.4kW | 40.8kW |
| PDU1 fail | fail  | fail  | fail  | 18.5A | 23.2A | 23.2A | 23.2A | 18.5A | 18.5A | 18.5A | 18.5A | 23.2A | 185.5A |
| PDU2 fail | 23.2A | 23.2A | 18.5A | fail  | fail  | fail  | 23.2A | 18.5A | 18.5A | 18.5A | 18.5A | 23.2A | 185.5A |
| PDU3 fail | 18.5A | 18.5A | 23.2A | 23.2A | 18.5A | 18.5A | fail  | fail  | fail  | 23.2A | 23.2A | 18.5A | 185.5A |
| PDU4 fail | 18.5A | 18.5A | 23.2A | 23.2A | 18.5A | 18.5A | 18.5A | 23.2A | 23.2A | fail  | fail  | fail  | 185.5A |

PDU의 각 Phase 별로 하나의 PSU가 연결되는 구성이므로 PDU의 Phase Balance가 유지

PDU의 최대 전류값이 32A 미만이므로 32A 삼상 PDU 적용 적합

Case Studies

기존 전산실 활용 Case Studies

#### 전제 상황

- 범용 IT 장비를 운영하고 있는 기존 전산실의 공간 및 설비 용량의 여유가 있는 경우
- Rack당 20kW 전후(DGX A100 3대 또는 DGX H100 2대 구성)의 GPU Server용 운영 공간을 기존 범용 IT 장비 운영 공간에 구성하려 하는 경우

#### 쿨링 검토 사항

- 새로 구성하는 GPU Server의 총 전력 용량(발열량)에 해당하는 냉수의 여유 용량 확인
- Room Cooling 환경(Package type 쿨러 또는 Wall Type Cooler) > 운영 중인 범용 IT 장비 Rack과 GPU Server용 Rack의 전력 밀도 편차가 2배 이상이므로 Room 쿨링 방식의 쿨링 시스템 환경에서는 전력 밀도 편차를 극복할 수 없음

#### 쿨링 이슈 해결 방안

- 기존에 구성되어 있는 쿨링 설비는 운영 중인 범용 IT 장비용으로 전용(Cooler의 위치 조정)
- GPU Server 공간을 위한 독립적인 쿨링 시스템 구축
- Room을 구분하여 차폐하는 경우 In-Row Cooler 또는 Rear Door Cooler 적용
- Room 구분없이 공간을 공유하는 환경에서는 Rear Door Cooler 적용

#### 전력 회로 검토사항

- DGX A100 server : Dual path의 분전회로와 이원화된 PDU 구성 필요 > 기존 전산실의 전원 회로가 이원화 되어 있고 용량이 허용되어야 함
- DGX H100 server : 최소 3개 path의 전원회로와 PDU 구성이 필요하므로, 이 조건 충족을 위한 회로 추가 구성 필요
- H100 Server의 경우 Redundant Topology 선택
  - 1. UPS/간선 Path/지선 Path/PDU: 3+1 Redundant
  - 2. UPS: N+1, 간선 Path/지선 Path/PDU: 3+1 Redundant
  - 3. UPS: N+1, 간선 Path: Dual, 지선 Path/PDU: 3+1 Redundant

#### 전력 회로 이슈 해결 방안

- 용량이 부족한 경우(UPS용량, 간선 분전회로 용량) 사용 중인 설비의 용량 증설은 매우 어려우므로 독립적으로 추가 용량 구성하는 것이 유리
- H100 server의 경우 3개 이상의 전력 회로가 필요하므로 기존 설비와 별개의 추가 전력 회로 구성

독립 전산 환경 구축

#### 전제 상황

- GPU Server 운영을 위한 독립적인 전산환경을 구축하고자 하는 경우
- 기 사용 중인 전력 및 쿨링 설비의 용량의 여유가 있는 경우와 추가 구성을 해야 하는 경우로 구분하여 고려

#### 쿨링 검토 사항

- 별도의 독립적인 전산공간을 구성하는 방식이므로 구성하고자 하는 GPU Server의 전력 밀도와 전원 요구 사항에 맞추어 설계 및 구성
- 통상 Rack 당 20kW 전후의 전력밀도로 구성(Rack 당 A100 Server 3대 또는 H100 Server 2대)로 구성되므로 이 수준의 전력밀도 지원을 위한 가장 효과적인 방식(Layout 효율성, Cooler 제어 편의성, 부하 변화 대응성, 등) 검토

#### 쿨링 이슈 해결 방안

- 기 구성되어 있는 쿨링 설비의 냉수 용량이 신규 구축 GPU Server 총 용량을 수용할 수 있는 여유가 있는 경우 냉수 배관의 조정으로 GPU Server zone의 쿨링 환경 구성
- 신규 구축 GPU Server 총 용량을 수용할 만큼의 여유가 없는 경우 부족분 만큼의 추가 증설 보다는 독립적인 쿨링 설비 구성이 유리
- Rack 당 20kW 이상의 전력 밀도 환경에서는 Rear Door Cooling 방식이 가장 유리함
- Rear Door Cooler 배관을 위한 이중마루 구성은 추후 설비 내구연수 이내에 적용 가능성이 매우 높은 Liquid Immersion Cooling 환경을 별도의 공사없이 쉽게 수용할 수 있음

#### 전력 회로 검토사항

- DGX A100 server의 경우 Dual path의 분전회로와 이원화된 PDU 구성이 필요함, 기존 전산실의 전원 회로가 이원화 되어 있고 용량이 허용한다면 사용 가능
- DGX H100 server의 경우 최소 3개 path의 전원회로와 PDU 구성이 필요하므로, 이 조건 충족을 위한 회로 추가 구성 필요

#### 전력 회로 이슈 해결 방안

- 용량이 부족한 경우(UPS용량, 간선 분전회로 용량) 사용 중인 설비의 용량 증설은 매우 어려우므로 독립적으로 추가 용량 구성하는 것이 유리
- H100 server의 경우 3개 이상의 전력 회로가 필요하므로 기존 설비와 별개의 추가 전력 회로 구성

Why DEFOG

#### 데이터센터 및 전산실 설계/구축/운영 실적 및 Know How 보유

- Software 개발 / Network 설계 및 운영 / IT 관리 등 전산실 연관 업무 담당 및 관리 경험 보유
- 기재부 주관 국가망 기본 구성안 설계(행안부 실행)
- 분당 야탑 Hostway Data Center 설계 및 구축
- 부산 센텀시티 Submarine Cable Landing Station 설계 및 구축
- 서울 역삼동 세종텔레콤 데이터 센터 설계 및 구축
- 판교 NHN Cloud Data Center 설계 / 구축 및 운영 자문
- 가산동 SK-BroadBand Next Generation Data Center 설계 자문
- 광주광역시 국가 AI Data Center 설계

## 최신의 IT Trend 및 Data Center 관련 선진 기술에 대한 선도적 설계 및 적용 Know How 보유

- 국내 최초 전용 IDC 설계 및 구축 (분당 Hostway)
- 국내 최초 Indirect Evaporative Cooler 설계 및 적용 (판교 NHN Cloud Data Center)
- 국내 최초 AI 전용 Data Center 설계 (광주광역시 국가 AI Data Center)

#### 주요 설비 공급사들 간의 이해관계에서 배제된 Neutral Position

#### 사용 제품군으로 완성되지 못하는 전산실 구성 요소들에 대한 다양한 솔루션 보유

- White Space(전산실 공간)에 대한 Total Solution 확보
- < Rack / Containment, Containment 환경에서의 Cooling Solution, Smart Door Lock, Asset Management, Environment Monitoring, DCIM 외 >

## 기획부터 Concept Design, 구축, 운영시스템 구성까지 원스탑 구축 지원 및 Maintenance Service 제공

Our Solutions

#### **Structural Ceiling Grid**

Grid Ceiling for air flow & fixing equipment



#### Containment

HAC / CAC



#### **DCIM**

Data Center Infrastructure Management



#### **Smart Door Locking System**

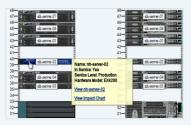
Remote door control & manage history



#### **System Rack**

Stacking IT Device & Cable Management




#### Consulting I

Power Density Planning, Layout Design, DCIM, Busway, In-row Cooling, Containment, SCG, Rack



#### Asset MGT System

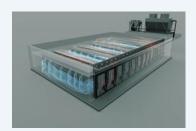
Inventory & Real Time tracking



#### **Bus Way**

Busway & Remote Power Panel(RPP)




#### iPDU

Intelligence PDU & Remote Access Device



#### **Cooling System**

Coil Wall Cooling & In-Row Cooling



#### **Environmental Monitoring**

Temp. & Humidity & Physical & Safety



# Structural Ceiling Grid



- Air Return Plenum 확보를 위한 Ceiling 구성 시 최적의 Solution
- 600mm x 600mm 간격의 격자형 Ceiling Grid 구성으로 Rack layout의 자유로운 배치와 간단한 Hot/Cold Aisle 변경
- 천정 고정이 필요한 모든 구성물은 상부 슬라브에 대한 앵커링 작업없이 Ceiling Grid에 고정 : 244kgf/m³ 이상의 허용 하중
- 투명 폴리카보네이트 재질의 Ceiling Panel로 높은 단열효과 및 미려한 마감

## Hot Aisle Containment(H.A.C)

#### **Advantage**

- 일반 통로가 Cold Aisle화 되어 쾌적한 환경 확보
- 간선 전원 Path가 Cold Aisle에 배치되어 도체의 발열에 대한 냉각 유리
- 향 후 확장성을 고려한 Design System으로 One Package 구축으로 TCO 절감

#### Disadvantage

- 상부에 Return air회수를 위한 Air Plenum용 Ceiling이 필요
- 최소 상부 슬라브까지의 높이가 4.5m이상 필요 (Layout과 전력밀도에 따라 상이함)
- C.A.C 대비 상대적으로 높은 투자 비용



## Cold Aisle Containment(C.A.C)

#### Advantage

- Raised Floor 환경에서 가장 쉽고 저렴하게 구성 가능한 구조
- 화재 신호 수신시 도어 및 오토루버 자동 열림 기능(7초 이내 완전 개방)
- 상부 오토 루버 개구율 80% 이상
- 전원 공급 중단 시 보조 배터리 활용을 통한 비상 대응

#### Disadvantage

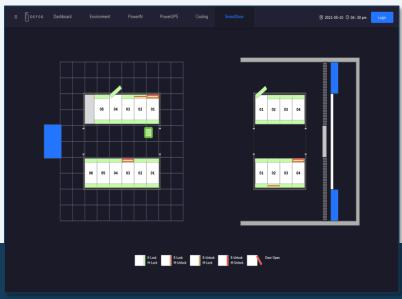
■ 일반 통로의 Hot Aisle화



## **DCIM I Data Center Infrastructure Management**

Power, Cooling, Environment, Analysis, Space, Remote Door, Admin 등 Customizing 화면 구성 및 관리 Software를 제공합니다.




- 시계열 DB와 관계형 DB Hybrid 구성을 통한 빠르고 정확한 데이터의 다양한 분석 (에너지 효율분석, 추이 분석, 리소스 밸런스 분석 등)
- Service Level의 Data Center 관리 System (인프라 운영 조직 외 기획/마케팅/영업/고객지원 등 서비스를 위한 모든 조직에 종합정보 지원)
- Site 특성과 Site별 연관 시스템 구성 환경에 따른 적용 유연성 제공을 위한 Back-End / Front-End 단의 Block조립 구조의 Module별 구성
- Site 규모의 변화에 유연한 확장성/적시성
- Site 규모 및 Data 수집 Point 수의 규모에 무관하게 누락없는 Data 수집이 가능한 성능 확보 구조 (모든 분석리포트는 3초 내 응답성능)

#### Remote Rack Door Smart Controller

관제실에서의 랙별 보안 On / Off 가 가능하여 엑세스 권한부여를 위한 일련의 과정이 불요하며 기록관리가 가능합니다. 다수의 Rack 잠금 장치 관리 시 Key 관리 또는 비밀번호 분실 등의 보안 문제를 예방할 수 있습니다.

#### **Smart Rack Controller**

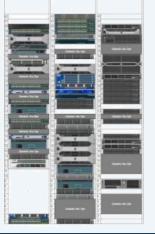




- 기설치 완료 Rack의 Door Handle 교체를 통한 손 쉬운 적용과 표준 스크립팅 및 통신 프로토콜 사용을 통한 네트워크 구성
- 프러그 앤 플레이 타입으로 네트 워크 구성 가능한 인프라에서의 자유로운 추가/이동 교체
- 금융관련 IT 장비나 개인 정보 관리용 IT 장비 등 높은 보안이 요구되는 Rack 적용
- 저전력 소비를 위한 효율적인 기어 모터 설계 / 원격(스마트폰 앱 등) 모니터링 및 액세스 제어 가능
- 모든 액세스 기록과 지속시간 등 설정된 주기별 자동 보고서 발송 및 특정 이벤트 보고서 생성 기능
- 전용 프로토콜 및 전용 컨트롤러 활용을 통해 최대 16개의 보안 액세스 모듈 지원



# ▮ Asset Management – IT 장비 위치 및 정보 관리 솔루션

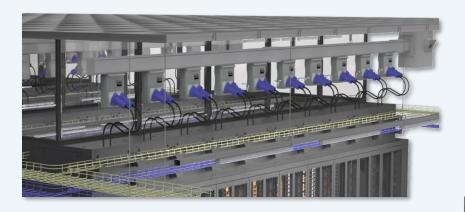

글로벌 Solution Provider와의 협업을 통해 최적의 솔루션을 공급합니다.



Asset Management Tag(AMT)

고유 ID 칩이 있는 AMT 자산 태그와 IT 장비용 바코드 접착 패치

Asset Management Sensor(AMS) 각 1U RGB 컬러 맞춤형 LED




AMS Gateway SNMP 게이트웨이 연결을 위한 AMS 센서 포트

- CMDB(Configuration management database)와의 연동으로 IT 장비의 관리 수준 Upgrade
- 자산 위치 자동화를 통한 자산의 변경/이동 등의 정보 표시 및 기록, 보관, 보고 등 사용자 지정 설정에 따른 자동화 시스템으로 생산성 향상
- DCIM 연동을 통한 전산실 운영 효율성 증대 및 IT 자산 수명주기 상태 자동 문서화
- IT 장비의 위치 정보 자동 수집 및 위치 변경시 변경된 위치 정보 자동 추적

#### Bus Way

글로벌 Solution Provider와의 협업을 통해 최적의 솔루션을 공급합니다.





- Global Data Center에서 가장 많이 사용되는 안정성(품질) 검증 제품
- 유선 이더넷 및 직렬 통신 이용을 통한 다중 회로 구성 모니터링
- 다양한 Open Protocol 제공을 통한 원활한 Interface
- 최종 공급부 온도 데이터 확인
- 설치에 필요한 자재가 적은 환경 친화적
- 다양한 TOU(Tap Off Unit)에 따른 사용환경 대응
- Plug-in Box 설치 위치 및 수량 제한 없는 유연성(타사의 경우 미리 구성된 Plug-in Hole에만 설치 가능)



#### Smart PDU

전압, 전류, 역률, 전력, 적산, 온도, 습도 등 계측 표시 및 경보(알람) 발생 시 알람 발생 값을 최우선 표시로 실시간 운용 상태 확인이 가능합니다. 국산 IDC 전용 Metered PDUs를 커스텀 형태로 제작 및 제공하며, 글로벌 제품인 Raritan / Legrand / Starline 제품을 제공합니다.





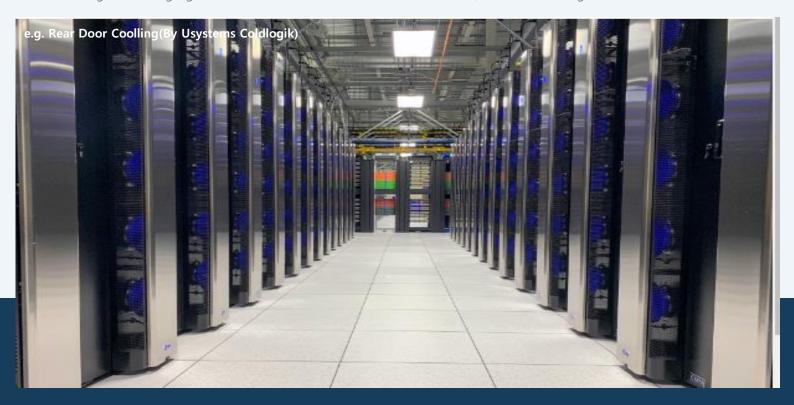
분전반 및 Plug-in box 설치용 전력 계측 장치 (Cat. 2 PUE 산정)





## Advanced Cooling Solution – Wall Coil Cooling

Server 기반 High Level Language 자동제어 솔루션 / Wall Coil 방식과 In Row Cooler, Rear Door Cooling 등 최적의 효율 방안을 제안합니다.



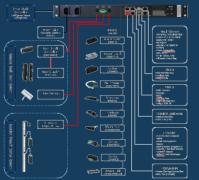

- 온도 편차 해소(Hot Spot 제거) & IT 부하 대비 Cooling Balancing
- 고밀도 환경 지원 & Cooling 에너지 효율 향상
- 차폐 구조에서의 풍량 / 온도 / 습도 제어 시스템

- Cooling 설비의 Redundant 구성
- 낮은 층고 환경에서의 Cooling Air Path 확보
- Package형 대비 넓은 Coil 면적 확보로 높은 열교환 효율

## Advanced Cooling Solution – Rear Door Cooling

Server 기반 High Level Language 자동제어 솔루션 / Wall Coil 방식과 In Row Cooler, Rear Door Cooling 등 최적의 효율 방안을 제안합니다.




- Rack 당 30kW 고밀도 부하까지 적용 가능
- 별도의 공조기실 구성이 필요하지 않아, 전산실 구성 면적 최소화
- Rack 단위의 Tightly Coupled Control로 Rack당 전력밀도의 편차에 아무런 문제가 없음
- 별도의 Containment 공사 불필요
- Rack 및 Rack Row의 배치 방향이나 Layout에 무관
- 짧은 공기 유통 거리로 효율 향상



## **Environment Monitoring**

다양한 센서 활용을 통한 보안 및 안정적 운영 방안을 확보 합니다.





- 수집된 다양한 환경 데이터는 DCIM의 Dash Board에서 Real Time Monitoring 가능
- 사용자 친화적 GUI(Graphic User Interface) 및 Sensor Health Check
- 온도/습도/차압/진동/누수/Door Closure 등 각종 최대 32개 센서 단일 버스 연결 가능
- 소방신호 연동 Door 개폐 설비
- 플러그 앤 플레이(Plug & Play) 방식으로 운영 중단 없이 설치 가능

Appendix

## Data Center 설비 구조

- IT 장비가 집적된 "Computing Space (White Space)"
- IT 장비의 항온-항습 / 전력 공급을 위한 "Supporting Infra Space (Gray Space)"
- 기반시설 전반을 운영/관리하는 업무공간 "Operation Space"



| 1  | 서버       | 네트워크와 HW 자원을 공유하도록 돕는 장치   |  |  |  |  |  |  |
|----|----------|----------------------------|--|--|--|--|--|--|
| 2  | 스토리지     | DC 내 발생하는 데이터 패킷 저장공간      |  |  |  |  |  |  |
| 3  | Rack     | 서버 및 네트워크 장비를 설치하는 캐비닛 공간  |  |  |  |  |  |  |
| 4  | 네트워크     | DC 내 서버가 통신망에 연결되도록 돕는 장치  |  |  |  |  |  |  |
| 5  | PDU      | 전력 분배장치                    |  |  |  |  |  |  |
| 6  | UPS      | 정전 시 내장 배터리를 통해 전원공급       |  |  |  |  |  |  |
| 7  | 배터리      | 전력공급 보조장치                  |  |  |  |  |  |  |
| 8  | 발전기      | UPS 외 비상시 DC의 자가발전을 위한 장비  |  |  |  |  |  |  |
| 9  | 수배전      | 발전소의 전력 공급/배분하는 전력시스템      |  |  |  |  |  |  |
| 10 | STS/ATS  | 항상 일정한 전원을 공급받도록 하는 장치     |  |  |  |  |  |  |
| 11 | 항온항습     | DC의 온도 및 습도 유지 장치          |  |  |  |  |  |  |
| 12 | 펌프       | 온도조절을 위해 Rack 하단 수로에 냉수 공급 |  |  |  |  |  |  |
| 13 | 냉각탑      | 냉각용수의 재사용을 위한 열교환장치        |  |  |  |  |  |  |
| 14 | 보안/방재    | CCTV 및 소화가스 등              |  |  |  |  |  |  |
| 15 | DCiM/EMS | 에너지 공급현황 모니터링 장비           |  |  |  |  |  |  |
| 16 | 사무실      | DC 운영 및 관리를 위한 직원 사무공관     |  |  |  |  |  |  |



www.defog.co.kr

blog.naver.com/defogsns

<u>@DEFOG</u>

@defog\_official

¶ @DEFOG LTD

@designforglobal

Thank you.